
Reciprocal Lattice and X-ray Diffraction

A diffraction pattern of a crystal is a map of the reciprocal
lattice of the crystal.



Reciprocal Lattice

• The reciprocal lattice is defined as the set of all wave
vectors K that yield plane waves with the periodicity of a
given Bravais lattice.

• Let R denotes a Bravais lattice point; consider a plane wave
exp(ik.r). This will have the periodicity of the lattice if the
wave vector k=G, such that

exp(iG.(r+R)=exp(iG.r)
for any r and all R Bravais lattice.

• Thus the reciprocal lattice vectors G must satisfy
exp(iG.R)=1



In one dimension with a period of a in x, we have 

expand n(x) in Fourier series of sines and cosines:

In more compact form

To ensure that n(x) is a real function, we 
require 

points in the reciprocal space are not allowed in the Fourier expansion of a pe-
riodic function.

It is convenient to write the series (4) in the compact form

(5)

where the sum is over all integers p: positive, negative, and zero. The coeffi-
cients np now are complex numbers. To ensure that n(x) is a real function, we
require

(6)

for then the sum of the terms in p and !p is real. The asterisk on denotes
the complex conjugate of n!p.

With the sum of the terms in p and !p in (5) is real if (6) is
satisfied. The sum is 

(7)

which in turn is equal to the real function

(8)

if (6) is satisfied. Here Re{np} and Im{np} are real and denote the real 
and imaginary parts of np. Thus the number density n(x) is a real function, as
desired.

The extension of the Fourier analysis to periodic functions n(r) in three
dimensions is straightforward. We must find a set of vectors G such that

(9)

is invariant under all crystal translations T that leave the crystal invariant. It
will be shown below that the set of Fourier coefficients nG determines the 
x-ray scattering amplitude.

Inversion of Fourier Series. We now show that the Fourier coefficient np

in the series (5) is given by

(10)

Substitute (5) in (10) to obtain

(11)np 

"
 

a!1 !
p!

 np! " a

0
 dx exp[i2!(p! ! p)x/a] .

np 

"
 

a!1 " a

0
 dx n(x) exp(!i2!px/a) .

n(r)"!
G

 nG exp(iG ! r)

2Re{np} cos " ! 2Im{np} sin "

" (np 

#
 

n!p)cos " # i(np 

!
 

n!p)sin " ,
np(cos " # i sin ") # n!p(cos " ! i sin ")

" " 2!px/a,

n!p*

n!p*
    " 

np ,

n(x) "!
p

 np exp(i2!px/a) ,
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Reciprocal Lattice Vector in 1D

n(x+a) = n(x)



Fourier coefficient:

Since

If	p’	= p,		np =	a-1np’	a =	np

We say that 2𝜋p/a is a point in the reciprocal lattice or Fourier space
of the crystal. The reciprocal lattice points tell us the allowed terms
in the Fourier series, which is consistent with the periodicity of the
crystal.



Reciprocal Lattice Vectors in 3D

Here



Brillouin Zone

A	Brillouin	zone	is	defined	as	a	Wigner-Seitz	cell	in	the	
reciprocal	lattice.



The central cell in the reciprocal lattice is of special
importance in the theory of solids, and we call it the first
Brillouin zone. The first Brillouin zone is the smallest volume
entirely enclosed by planes that are the perpendicular bi-
sectors of the reciprocal lattice vectors drawn from the origin.

Brillouin Zone in 1D and 2D

Here are orthogonal vectors of unit length. The volume of the cell is 
a1 a2 ! a3 " a3. The primitive translation vectors of the reciprocal lattice are
found from the standard prescription (13):

(27b)

Here the reciprocal lattice is itself a simple cubic lattice, now of lattice 
constant 2!/a.

b1 " (2!/a)x̂ ;   b2 " (2!/a)y ˆ  ;   b3 " (2!/a)ẑ .

!
x̂, ŷ, ẑ
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Figure 10  Construction of the first Brillouin
zone for an oblique lattice in two dimensions. We
first draw a number of vectors from O to nearby
points in the reciprocal lattice. Next we construct
lines perpendicular to these vectors at their mid-
points. The smallest enclosed area is the first Bril-
louin zone.
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Figure 11  Crystal and reciprocal lattices in one dimension. The basis vector in the reciprocal lat-
tice is b, of length equal to The shortest reciprocal lattice vectors from the origin are b and
#b. The perpendicular bisectors of these vectors form the boundaries of the first Brillouin zone.
The boundaries are at .k�"�!!/a

2!/a.
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All Brillouin Zones: Square Lattice
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Reciprocal Lattice to bcc Lattice

An fcc lattice is the reciprocal lattice of the bcc lattice.



Reciprocal Lattice to fcc Lattice

A bcc lattice is the reciprocal lattice of the fcc lattice.



First Brillouin Zone for fcc



First Brillouin Zone for bcc



Wavelength vs particle energy

λ (Å)	=	[150/E	(eV)]1/2 for	electron

λ (Å)	=	12.4/E	(keV)	for	photon

λ (Å)	=	[82/E	(meV)]1/2 for	neutron

λ	=	h/P	=	h/(2mE)1/2de Broglie wavelength



X-ray Diffraction

l/hcE =

Typical interatomic distances in solid are of the order of
an angstrom. Thus the typical wavelength of an
electromagnetic probe of such distances must be of the
order of an angstrom.

Upon substituting this value for the wavelength into the
energy equation, we find that E is of the order of 12
thousand eV, which is a typical X-ray energy. Thus X-ray
diffraction of crystals is a standard probe.

λ (Å)	=	12.4/E	(keV)



Bragg Diffraction: Bragg’s Law

nλ = 2dhkl sinθhkl

hkl

Planes with Miller index (hkl) has the interplane distance dhkl:

dhkl = a/(h2+k2+l2)1/2



Condition for Interferences



Diffraction Conditions

Theorem:	The	set	of	reciprocal	lattice	vectors	G determines	
the	possible	x-ray	reflections.



Scattering Amplitude of X-Ray Diffraction

△k	=	k’	- k

n(r):	Electron	number	density	at	r



The	periodic	function	of	electron	number	density	n(r)	can	be	
expressed	as

△k	=	k’	- k

When	the	scattering	vector	∆k	is	equal	to	a	particular	reciprocal	
lattice	vector,	



k’	=	k	+	G.The	diffraction	condition	is

In	elastic	scattering	k’2 =k2,	so	the	diffraction	condition	can	
be	written	as

or

which	is	another	statement	of	the	Bragg	condition.



Ewald Construction



Bragg Spectrometer



Characteristic X-Rays



Wavelengths for X-Radiation



Brehmsstrahlung X-Rays



Bragg Peaks

Each plane reflects ~0.01% 

with every lattice point. We shall see, however, that the composition of the
basis determines the relative intensity of the various orders of diffraction
(denoted by n above) from a given set of parallel planes. Bragg reflection from
a single crystal is shown in Fig. 3 and from a powder in Fig. 4.

SCATTERED WAVE AMPLITUDE

The Bragg derivation of the diffraction condition (1) gives a neat state-
ment of the condition for the constructive interference of waves scattered
from the lattice points. We need a deeper analysis to determine the scattering
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Figure 3  Sketch of a monochromator which by Bragg reflection selects a narrow spectrum of 
x-ray or neutron wavelengths from a broad spectrum incident beam. The upper part of the figure
shows the analysis (obtained by reflection from a second crystal) of the purity of a 1.16 Å beam of
neutrons from a calcium fluoride crystal monochromator. (After G. Bacon.)

Figure 4  X-ray diffractometer recording of powdered silicon, showing a counter recording of the
diffracted beams. (Courtesy of W. Parrish.)
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X-ray Diffractometer

Animation showing the five motions possible with a four-circle kappa
goniometer. The rotations about each of the four angles φ, κ, ω and 2θ
leave the crystal within the X-ray beam, but change the crystal
orientation. The detector (red box) can be slid closer or further away
from the crystal, allowing higher resolution data to be taken (if
closer) or better discernment of the Bragg peaks (if further away).
file:///Users/mac/Downloads/Kappa_goniometer_animation.ogv.36
0p.webm

file:///Users/mac/Downloads/Kappa_goniometer_animation.ogv.360p.webm
file:///Users/mac/Downloads/Kappa_goniometer_animation.ogv.360p.webm


X-ray Diffraction Rings from a Powder Sample



X-ray diffraction patterns from 
3 different forms of SiO2



In one dimension with a period of a in x, we expand 
n(x) in Fourier series of sines and cosines:

Electron	number	density	n(r)	is	a	periodic	function	of	r

In more compact form

To ensure that n(x) is a real function, we 
require 

points in the reciprocal space are not allowed in the Fourier expansion of a pe-
riodic function.

It is convenient to write the series (4) in the compact form

(5)

where the sum is over all integers p: positive, negative, and zero. The coeffi-
cients np now are complex numbers. To ensure that n(x) is a real function, we
require

(6)

for then the sum of the terms in p and !p is real. The asterisk on denotes
the complex conjugate of n!p.

With the sum of the terms in p and !p in (5) is real if (6) is
satisfied. The sum is 

(7)

which in turn is equal to the real function

(8)

if (6) is satisfied. Here Re{np} and Im{np} are real and denote the real 
and imaginary parts of np. Thus the number density n(x) is a real function, as
desired.

The extension of the Fourier analysis to periodic functions n(r) in three
dimensions is straightforward. We must find a set of vectors G such that

(9)

is invariant under all crystal translations T that leave the crystal invariant. It
will be shown below that the set of Fourier coefficients nG determines the 
x-ray scattering amplitude.

Inversion of Fourier Series. We now show that the Fourier coefficient np

in the series (5) is given by

(10)

Substitute (5) in (10) to obtain

(11)np 

"
 

a!1 !
p!

 np! " a

0
 dx exp[i2!(p! ! p)x/a] .

np 

"
 

a!1 " a

0
 dx n(x) exp(!i2!px/a) .
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Fourier Analysis of the Basis
When the diffraction condition, △k = G, is satisfied, the
scattering amplitude for a crystal of N cells may be written as

α

a

b
CB ED

O A

y

x

If	rj is	the	vector	to	the	center	of	
atom	j,	then	the	function	nj(r – rj)	
defines	the	contribution	of	that	
atom	to	the	electron	concentration	
at	r.	The	total	electron	density	is

RN

r

rj



The	structure	factor	SGmay	be	written	as

then

Since
so



Structure Factor of the bcc Lattice

x1 =	y1 =	z1	=	0,	and	x2 =	y2 =	z2	=	½.		Thus,	

Its	diffraction	pattern

does	not	contain	lines	such	as	(100),	(	300),	(111)	or	(221),	but

lines	such	as	(200),	(110)	and	(222)	will	be	present.

and
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Index System for Crystal Planes

• Find the intercepts on the axes 
in terms of the lattice constants 
a1, a2, a3. The axes may be 
those of a primitive or 
nonprimitive cell. 

• Take the reciprocals of these 
numbers and then reduce to 
three integers having the 
same ratio, usually the 
smallest three integers. The 
result, enclosed in 
parentheses (hkl), is called 
the index of the plane. 



Diffraction from the planes of a bcc Lattice



Structure Factor of the fcc Lattice
The basis of the fcc structure referred to the cubic cell has
identical atoms Thus

If all indices are even integers, S = 4f; similarly if all indices are
odd integers. But if only one of the integers is even, two of the
exponents will be odd multiples of −i𝜋 and S will vanish. If only
one of the integers is odd, the same argument applies and S
will also vanish. Thus in the fcc lattice no reflections can occur
for which the indices are partly even and partly odd.



Missing Diffraction Orders

Lattice Type
Miller indices sc bcc fcc

1 0 0 Y N N
1 1 0 Y Y N
1 1 1 Y N Y
2 0 0 Y Y Y
2 1 0 Y N N
2 1 1 Y Y N
2 2 0 Y Y Y
3 1 0 Y Y N
3 1 1 Y N Y



Atomic Form Factor

If	the	electron	distribution	is	spherically	symmetric	about	the	
origin,	then

･

:



Problems

2.

.

3. Show that the reciprocal lattice of a two-dimensional lattice can be represented by rods.
Discuss the Ewald construction for diffraction from a two-dimensional lattice and
determine the diffracted beam for a particular orientation and magnitude of k0. Why does
one observe a diffraction pattern of electrons from a surface for all values and
orientations of k0 above a critical value? Calculate the critical energy at which the first
diffracted beam appears, when the electrons are incident perpendicular to a (100)
surface of a Cu crystal.


